

Intertek Testing Services NA, Inc. 1717 Arlingate Lane Columbus, OH 43228 (614)279-8090 phone (614)279-4642 fax

Project No. G100032212

March 31, 2010

REPORT NO. 100032212COL-001

PERFORMANCE TESTING OF HCR-188C REFRIGERANT VERSUS R-134a REFRIGERANT TO APPLICABLE PORTIONS OF ARI 540 AND CUSTOM TEST PROTOCOL

RENDERED TO

A. S. TRUST & HOLDINGS INC. KANEOHE, HI

<u>GENERAL</u>: This Report gives the results of the tests and evaluation of HCR-188C, a hydrocarbon refrigerant blend, designed for replacing R-134a in refrigeration and air-conditioning systems. The HCR-188C refrigerant was tested through side-by-side comparison with R-134a in identical refrigeration systems and by applicable requirements of the *Standard for Positive Displacement Refrigerant Compressors and Compressor Units, ARI 540, dated 01/01/1999.* This investigation was authorized by signed quotation number 500207680, dated February 2, 2010. The investigation was started on February 18, 2010 and completed on March 31, 2010. The applicant provided the sample HCR-188C for testing. Joe Sexton of Haier provided identical refrigeration compressors for testing. Testing was conducted at the Columbus, OH Intertek facility.

Positive Displacement Refrigerant Compressors and Compressor Units, ARI 540, dated 01/01/1999

<u>Applicant:</u>	A. S. Trust & Holdings Inc 44-129 Mikiola Drive KANEOHE, HI 96744 USA	Manufacturer:	A. S. Trust & Holdings Inc 44-129 Mikiola Drive KANEOHE, HI 96744 USA
Contact:	Mr. Richard Maruya	Contact:	Mr. Richard Maruya
Phone:	(808) 235-1890	Phone:	(808) 235-1890
Fax:	(808) 235-0116	Fax:	(808) 235-0116
Email:	richardastrust@yahoo.com	Email:	richardastrust@yahoo.com

An independent organization testing for safety, performance, and certification.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Page 2 of 8

PRODUCT DESCRIPTION

PRODUCT

The product is a proprietary hydrocarbon refrigerant blend, designated HCR-188C, designed to be suitable as a replacement for R-134a in refrigeration and air-conditioning systems.

PRODUCT DESCRIPTION

The product is flammable. The product is not an ozone depleting substance. The product has low GWP (Global Warming Potential). The product operates at approximately one quarter of the charge amount as compared to R-134a.

ELECTRICAL RATINGS

None

OTHER RATINGS

Saturation pressure approximately 110 psig at 75%

Page 3 of 8

TEST PROCEDURE

Two identical refrigeration systems were constructed and one was charged with 372.5 grams of R-134a and the other was charged with 131.0 grams of HCR-188C. The systems were operated simultaneously from the same power supply from February 18, 2010 thru March 31, 2010. Flow measurements of each system's capillary tube were recorded at the beginning and end of the test. Daily measurements of the operating pressures, temperatures and power consumption were recorded. Oil samples from each compressor were analyzed at the conclusion of the test for moisture, acid, viscosity and wear metals.

RESULTS #1

Capillary Tube Clogging Characteristics								
Flow Reading (lpm at 10" Hg positive pressure)								
	February 12, 2010	March 31, 2010						
	@ 0 Hours	@ 1000 Hours	Flow Loss Percent					
R-134a Cap Tube	4.65	4.58	0.015%					
HCR-188C Cap Tube	4.68	4.65	0.006%					

Both capillary tubes exhibited minimal flow loss. Neither loss translated into any detrimental effect on the performance of the respective system compressor.

Page 4 of 8

RESULTS #2

Project #	Glooc	32212	·	Client	_A.S. ⁻	RUST	-	Refrigerant	<u>1 R-13</u>	<u>4a</u>
Compressor	EMBRA	co EGX	70HLC	Duration	1000 Hou	rs (42 ·	DAYS)	Lubricant	ESTER	<u>/ISO 7</u>
Date	Time	Suction Pressure	Discharge Pressure (psig)	Ambient	Comp. Discharge Temp (°F)	To Cap Tube Temp (°E)	From Cap Tube Temp (°E)	Comp. Suction Temp (°F)	Voltage	Amps
		(poig)	(poig)				101110 (17)	101110 (17)	Tonugo	70000
2.18.10	1200	STARTE	D. SYSTEM	<u>~ A0</u>	JUSTING	CHARGE		20	1.0 -	
" 0.00.00	1530	29	141	70	00	106	20	20	110.5	1.5
2.14.10	0810	21	133	<u>+2</u>	47	104	40	27	0.00	1.4
	1810	28	137	- 14 -	101	105	40	31	119.0	1.4
2.20.10	1245	20	140	74		106	40	26	117. 1	
2.22.0	0000	28	140	74 74	101	106	20	<u>36</u> 21	118.7	1.4
2.25.10	0810	27	137	72	100 44	105	20	26 25	119.1	1.4
2.24.10	0010	21	136	70	00	104	30	30 24	111.5	1.4
2.25.10	0820	26	100	72	100	105	20	25	117.1	1.7
2.26.10	0810	26	120	10	100	104	20	25	117.1	
2.21.10	1630	20	108	<u>†</u> 2 76	100	105	20	30		1.T
3.0.10	0800	28	145	<u>+</u> 0 7/4	100	108	20	<u>36</u>		
3.2.10	0800	26	120	11 72	100	105	20	<u>ງ</u> ວ 2∈	117.3	1.4
2.2.10	0800	26	127	7/		105	20	33 34	117.4	
2 5.10	0805	26		14		105	20	25 25	117.20	1.11
2.0.10	1715	20	140	74		100	<u> 20</u>	20	120 4	<u>іт</u> 1 Д
2 0.10	1415	21	145	72	105	105	27	206 204	120.7	1. 1
2 9.10	0815	26	139	72		105	27	37 24	110.2	1.11
3.17.10	0020	240		73 7小	100	103	20	25	110.7	14
3.10.10	0015	27		75	102	100	29	2/	110 /	1.4
3 12.10	0015	27 27	146	75	103	108	29	26	120 5	15
2.12.10	20203	27	071) 140	73	105	100	21	34	120.5	1.4
2.15.10	22.4J	25	174	<u>דט</u> דט			25	27	119.9	1.4
3.11. 1A	NO15	23	1 <u>.5.1</u>	71	100	107	27	22	119 6	14
2.15.10	0820	26	175 114	73	101	101	37	22	120.0	1.4
2.10.10	0840	26	142	73		106	27	22	120.6	1.4
2.9.10	0840	25	138	72	49	104	35	32	120.1	1.4
3-21-10	1900	30	168	74	110	116	43	40	121.5	1.6
3.22.10	0840	27	146	74	102	108	38	34	120.2	1.4
3.22.10	0840	25	139	72	99	105	35	32	119.9	1.4
3.24.10	1945	26	140	73		106	37	32	119.9	1.4
3.25.10	0845	26	140	73	101	106	36	32.	120.1	1.4
3.26.10	0900	27	147	74	103	108	.38	33	119.1	1.4
3.28.10	1825	27	44	74	102	107	37	32	121.0	1.4
3.29.10	0845	27	142.	74	101	107	36	32	120.2	1.4
3.30.10	0845	26	140	73	100	105	35	31	120.1	1.4
3.31.10	0845	26	139	73	100	105	36	32.	120.7	1.4

Page 5 of 8

RESULTS #2 Continued

Project #	G1000	32212		Client	A.S. 7	RUST		Refrigerant	HCR-1	<u>88C</u>
Compressor	EMOR	co EGX	70HLC	Duration	1000 Hou	<u>es (42)</u>	DAYS)	Lubricant	ESTER /	<u>ISO 7</u>
Date	Time	Suction Pressure (psig)	Discharge Pressure (psig)	Ambient Temp (°F)	Comp. Discharge Temp (°F)	To Cap Tube Temp (°F)	From Cap Tube Temp (°F)	Comp. Suction Temp (°F)	Voltage	Amps
2.18.10	1415	STARTE	SYSTE	2 - A	DJUSTING	CHARGE				
	1530	42	187	74	110	108	41	38	118.5	1.6
2.19.10	0810	39	180	72	107	106	39	36	118.8	1.5
15	1810	40	182	74	108	107	41	37	119.8	1.6
2.20.10	1245	42	188	74	111	111	43	41	119.7	1.6
2.22.10	0810	42	189	74	112	113	44	42	118.9	1.6
2.23.10	0810	41	183	74	110	110	42	40	119.1	1.6
2.24.10	0810	40	180	73	109	109	41	39	119.3	1.5
2.25.10	0820	39	179	72.	109	109	41	39	119.1	1.5
2.26.10	0810	39	178	73	109	108	41	39	119.1	1.5
2.27.10	1630	39	178	73	109	108	41	39	119.6	1.5
3.1.10	0800	38	173	75	109	108	40	38	119.7	1.5
3.2.10	0805	37	170	74	108	107	40	37	119.5	1.5
3.3.10	0800	35	168	73	106	105	39	35	119.7	1.4
3.4.10	0805	37	170	74	108	107	40	37	119.8	1.5
3.5.10	0940	36	170	74	108	107	40	37	118.7	1.5
3.6.10	1715	37	OFI	75	109	109	41	<u>3</u> 8	120.4	1.4
3.8.10	0815	35	166	73	106	105	38	36	118.8	1.4
3.9.10	0820	35	166	73	106	105	39	36	118.7	1.4
3.10.10	0815	35	168	74	108	107	39	37	119.0	1.5
3-11-10	0815	36	169	75	109	107	40	37	119.6	1.4
3.12.10	0815	35	167	75	108	107	39	37	/20.5	1.5
3-13-10	22.45	34	162	73	107	106	39	36	121.2	1.4
3.15.10	0815	.33	158	71	104	103	36	33	119.8	1.4
3-16-10	0815	34	161	73	106	105	37	35	119:6	1.4
3.17.10	0820	34	160	73	106	104	37	35	120.0	1.4
3.18.10	0840	34	16.1	73	106	104	37	35	120.6	1.4
3.19.10	0840	33	159	72	105	103	36	34	120.1	1.4
3.21.10	1900	39	177	79	115	113	44	42.	121.5	1.5
3.22.10	0840	34	162	74	107	106	37	36	120.2	1.4
3.23.10	0840	32	157	72	104	102	35	33	119.9	1.4
3.24.10	0845	33	160	73	106	104	37	35	119.9	1.4
3.25.10	0845	33	159	73	106	104	37	35	120.1	1.4
3.26.10	0900	34	163	74	108	106	39	36	119.1	1.4
3.28.10	1825	34	162.	74	107	106	38	36	121.0	1.4
3.29.10	0845	34	160	74	106	105	<u>38</u>	36	120.2	1.4
3.30.10	0845	33	159	73	105	104	36	35	120.1	1.4
3.31.10	0845	33	158	73	105	104	37	35	/20.7	1.3

Page 6 of 8

RESULTS #2 Continued

Initially, both systems were adjusted to achieve the same amount of cooling as measured at the compressor suction port. This was accomplished by a combination of the percent blockage across each system's condensing fan and also by varying the charge amount in each system, ultimately adding a HCR-188C charge that was approximately 35% of the R-134a charge. At this condition, the HCR-188C system operated at approximately 46 psig higher discharge pressure than the R-134a system and consumed approximately 0.15 Amps more power. Operating conditions were then maintained with no outside adjustments or changes. As both compressors broke in over the course of the test, they both exhibited increased cooling capacity and efficiency. At the end of the test, conditions had shifted such that the HCR-188C system operated at only 19 psig higher discharge pressure than the R-134a system and consumed approximately equal power, but the amount of cooling measured at the compressor suction port was warmer by approximately 3.75F.

RESULTS #3

At the conclusion of the test, oil samples from each compressor were analyzed for moisture, acid, viscosity and wear metals. The lab reports for those analyses are included as an attachment to this report.

Page 7 of 8

PHOTOS

Test Start

R-134a System Start

R-134a System End

HCR-188C System Start

HCR-188C System End

Test End

Page 8 of 8

TEST EQUIPMENT

Climate Controlled Lab

2 Identical Complete Refrigeration System Test Fixtures Comprised Sequentially Of:

- o Embraco Compressor, model EGX70HLC pre-charged with 280ml ESTER / ISO7 oil
- o 3/16" OD Copper Tube, 70" long, coiled
- o ¼" OD Copper Tube, 13" long, coiled
- o 1/4" Copper Tee, with access port to high side of manifold gauge
- o 1/4" OD Copper Tube, 13" long, coiled
- o Finned Copper Tube Condenser Coil, ⅔" OD tubes, 3 rows, 4-½"W x 8"H x 2-½"D
- Cooled by Ball 5-½" Ducted Fan, model XF1551ABHL, 0.32A, inlet grill 58% blocked
- o 1/4" Brass Swivel Union
- o Emerson EK-032 Filter Drier
- o 1/4" Brass Swivel Union
- Parker Moisture Indicating Sight Glass
- o 0.064" ID Capillary Tube, 96" long, coiled, with 2-1/2" long 1/4" OD copper tube flared connections
- o 1/4" Brass Male Flare Coupler
- o 1/4" OD Copper Tube (Evaporator), 96" long, coiled
- o 1/4" Copper Tee, with access port to low side of manifold gauge
- 1/4" OD Copper Tube, 7" long
- Compressor

Identical Brand New CPS Products Reference Only Manifold Set Pressure Gauges

- Thermocouples Placed At:
 - Room Ambient
 - o Compressor Discharge Port
 - o 1/4" Brass Swivel Union Between Filter Drier and Sight Glass
 - o Outlet of 0.064" ID Capillary Tube
 - Compressor Suction Port

Vacuum Pump

Virgin R-134a and Virgin HCR-188C

CALIBRATED EQUIPMENT

Item	Equipment Type	Equipment #	Cal. Due Date
1	Fluke 335 Volt/Amp Meter	E206	June 11, 2010
2	Omega Digital Thermometer	E132	Mar. 16, 2010
3	Omega Digital Thermometer	E237	Mar. 22, 2011
4	Top Loading Balance	CE1031	May 12, 2010
5	CECOMP 0 – 500 psi Digital Pressure Gauge	E184	June 9, 2010
6	Meriam 40" Mercury Manometer	CE1118	For Reference Only
7	Cole Parmer 0.5 – 5.0 lpm Acrylic Flow Meter	CE1121	For Reference Only
8	Reference Standard Cap Tube	LL1	For Reference Only

Report prepared by:

Brandon Button Senior Associate Engineer

Report approved by:

Ramzi Amawi Operations/Engineering Manager